Current-Limited Switch for Two USB Ports

Abstract

General Description The MAX1930 current-limited $70 \mathrm{~m} \Omega$ switch with built-in fault blanking provides an accurate, preset 1.2A to 2.3A current limit, making it ideal for dual USB applications. Its low quiescent supply current $(16 \mu \mathrm{~A})$ and standby current $(1 \mu \mathrm{~A})$ conserve battery power in portable applications. The MAX1930 operates with inputs from 2.7 V to 5.5 V , making it ideal for both 3 V and 5 V systems.

The MAX1930 has several safety features to ensure that the USB port is protected. Built-in thermal-overload protection limits power dissipation and junction temperature. The device also has accurate internal current-limiting circuitry to protect the input supply against overload. The MAX1930 is offered in a space-saving 8-pin SO package and operates over the extended $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$) temperature range.

Applications
Notebook Computers
USB Ports and Hubs
Docking Stations

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX1930ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO

- Pin Compatible with TPS2010-TPS2013
- Accurate Current Limit (1.2A min, 2.3A max)
- 125m Ω (max) High-Side MOSFET
- Short-Circuit and Thermal Protection
- Undervoltage Lockout
- $16 \mu \mathrm{~A}$ Quiescent Supply Current
- $1 \mu \mathrm{~A}$ (max) Standby Supply Current
- 2.7V to 5.5V Supply Range
- UL Recognized: UL\# E211395

Pin Configuration

TOP VIEW

Typical Operating Circuit

Current-Limited Switch for Two USB Ports

ABSOLUTE MAXIMUM RATINGS

IN, $\overline{E N}$ to GND \qquad-0.3V to +6 V
OUT to GND
-0.3 V to $(\mathrm{V}$ IN $+0.3 \mathrm{~V})$
Maximum Switch Current. \qquad 2.3A (internally limited)
OUT Short Circuit to GND \qquad

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
8-Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)................ 471 mW Operating Temperature Range (extended)......... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V} / \mathrm{N}=5 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}\right.$ to $\mathbf{+ 8 5}^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OPERATING CONDITION							
Input Voltage	VIN			2.7		5.5	V
POWER SWITCH							
Switch Static Drain-Source On-Resistance	RDS(ON)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IN }}=4.4 \mathrm{~V}$ to 5.5 V		70	100	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IN }}=4.4 \mathrm{~V}$ to 5.5 V			125	
			V IN $=3 \mathrm{~V}$		72	150	
Switch Turn-On Time	ton	ILOAD $=400 \mathrm{~mA}$			80	200	$\mu \mathrm{s}$
Switch Turn-Off Time	tofF	ILOAD $=400 \mathrm{~mA}$		3	6	20	$\mu \mathrm{s}$
ENABLE INPUT ($\overline{\text { EN }}$)							
$\overline{\mathrm{EN}}$ High-Level Input Voltage	V_{IH}	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ to 3.6 V		2.0			V
		V IN $=3.7 \mathrm{~V}$ to 5.5 V		2.4			
$\overline{\text { EN }}$ Low-Level Input Voltage	VIL	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ to 5.5 V				0.8	V
$\overline{\mathrm{EN}}$ Input Current		$\mathrm{V}_{\text {EN }}=\mathrm{V}_{\text {IN }}$ or GND		-1		+1	$\mu \mathrm{A}$
Startup Time		$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, COUT $=150 \mu \mathrm{~F}$ from $\overline{\mathrm{EN}}$ driven low to 50% full $V_{\text {OUT }}$			1		ms
CURRENT LIMIT							
Overload Output Current	ILIMIT	Force V ${ }_{\text {OUt }}$ to 4.5 V		1.2	1.75	2.3	A
Short-Circuit Output Current	ISC	OUT shorted to GND			1	1.5	A
SUPPLY CURRENT							
Supply Current, Low-Level Input		$\mathrm{V}_{\text {EN }}=\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$			0.002	1	$\mu \mathrm{A}$
Supply Current, High-Level Input	IQ	VEN $=0$, lout $=0$	Timer not running		16	25	$\mu \mathrm{A}$
			Timer running		35		
Supply Leakage Current		$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=0 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.01	2	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			15	
UNDERVOLTAGE LOCKOUT							
Undervoltage Lockout	UVLO	Rising edge, 100 mV hysteresis		2.0	2.4	2.6	V
THERMAL SHUTDOWN							
Thermal-Shutdown Threshold					165		${ }^{\circ} \mathrm{C}$

Current-Limited Switch for Two USB Ports

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $\mathbf{+ 8 5}^{\circ} \mathbf{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
OPERATING CONDITION					
Input Voltage	VIN		3.0	5.5	V
POWER SWITCH					
Switch Static Drain-Source On-Resistance	RDS(ON)	$\mathrm{V}_{\text {IN }}=4.4 \mathrm{~V}$ to 5.5 V		125	$\mathrm{m} \Omega$
		$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$		150	
Switch Turn-On Time	ton	ILOAD $=400 \mathrm{~mA}$		200	$\mu \mathrm{s}$
Switch Turn-Off Time	tofF	ILOAD $=400 \mathrm{~mA}$	1	20	$\mu \mathrm{s}$
ENABLE INPUT ($\overline{\text { EN }}$)					
$\overline{\text { EN }}$ High-Level Input Voltage	V_{IH}	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$ to 3.6 V	2.0		V
		$\mathrm{V}_{\text {IN }}=3.7 \mathrm{~V}$ to 5.5 V	2.4		
$\overline{\text { EN }}$ Low-Level Input Voltage	VIL	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}$ to 5.5 V		0.8	V
$\overline{E N}$ Input Current		$\mathrm{V}_{\text {EN }}=\mathrm{V}_{\text {IN }}$ or GND	-1	+1	$\mu \mathrm{A}$
CURRENT LIMIT					
Overload Output Current	ILIMIT	Force Vout to 4.5 V	1.2	2.3	A
Short-Circuit Output Current	ISC	OUT shorted to GND		1.5	A
SUPPLY CURRENT					
Supply Current, Low-Level Input		$\mathrm{V}_{\text {EN }}=\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		2	$\mu \mathrm{A}$
Supply Current, High-Level Input	lQ	$V_{\overline{E N}}=\mathrm{GND}$, IOUT $=0$, timer not running		25	$\mu \mathrm{A}$
Supply Leakage Current		$V_{\overline{E N}}=\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=\mathrm{GND}$		15	$\mu \mathrm{A}$
UNDERVOLTAGE LOCKOUT					
Undervoltage Lockout	UVLO	Rising edge, 100 mV hysteresis	2.0	2.9	V

Note 1: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.

Typical Operating Characteristics

(Circuit of Figure 2, V IN $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Current-Limited Switch for Two USB Ports

Typical Operating Characteristics (continued)

(Circuit of Figure 2, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Current-Limited Switch for Two USB Ports

PIN	NAME	FUNCTION
1	GND	Ground
2,3	IN	Input. P-channel MOSFET source-connect all IN pins together and bypass with a 1 μ F capacitor to ground.
4	$\overline{\mathrm{EN}}$	Active-Low Switch Enable Input. A logic low turns on the switch.
5	OUTNC	No Connection. This pin is not internally connected and can be connected to OUT.
$6,7,8$	OUT	Switch Output. P-channel MOSFET drain-connect all OUT pins together and bypass with a $0.1 \mu \mathrm{~F}$ capacitor to ground.

Figure 1. Functional Diagram

Detailed Description

The MAX1930 P-channel MOSFET power switch limits output current to 1.2A (min) and 2.3A (max). When the output current increases beyond the current limit (ILIMIT), the current also increases through the replica switch (IOUT / 13,000). The current-limit error amplifier compares the voltage to the internal 1.24 V reference and regulates the current back to the lLIMIT (Figure 1).
These switches are not bidirectional. As a result, the input voltage must be higher than the output voltage.

Continuous Short-Circuit Protection The MAX1930 is a short-circuit protected switch. In the event of an output short-circuit condition, the current through the switch is foldback-current-limited to 1 A continuous.

Thermal Shutdown

The MAX1930 has a thermal shutdown feature. The switch turns off when the junction temperature exceeds $+165^{\circ} \mathrm{C}$. When the MAX1930 cools $20^{\circ} \mathrm{C}$, the switch turns back on. If the fault short-circuit condition is not removed, the switch cycles on and off, resulting in a pulsed output.

Applications Information

Input Capacitor

To limit the input voltage drop during momentary output short-circuit conditions, connect a capacitor from IN to GND. A $1 \mu \mathrm{~F}$ ceramic capacitor is adequate for most applications; however, higher capacitor values further reduce the voltage drop at the input (Figure 2).

Output Capacitor

Connect a $0.1 \mu \mathrm{~F}$ capacitor from OUT to GND. This capacitor helps to prevent inductive parasitics from pulling OUT negative during turn-off.

Layout and Thermal Dissipation

It is important to optimize the switch response time to output short-circuit conditions by keeping all traces as short as possible to reduce the effect of undesirable parasitic inductance. Place input and output capacitors as close as possible to the device (no more than 5 mm away). All IN and OUT pins must be connected with short traces to the power bus. Wide power-bus planes provide superior heat dissipation through the MAX1930's IN and OUT pins.
Under normal operating conditions, the package can dissipate and channel heat away. Calculate the maximum power dissipation as follows:

$$
P=(\mathrm{ILIMIT})^{2} \times \operatorname{RON}
$$

where ILIMIT is the preset current limit (2.3A max) and RON is the on-resistance of the switch ($125 \mathrm{~m} \Omega$ max).
When the output is short circuited, foldback-current-limiting activates and the voltage drop across the switch equals the input supply voltage. The power dissipated across the switch increases, as does the die tempera-

Current-Limited Switch for Two USB Ports

Figure 2. Typical Application Circuit
ture. If the fault condition is not removed, the thermaloverload protection circuitry activates (see the Thermal Shutdown section). Wide power-bus planes connected to IN and OUT and a ground plane in contact with the device help dissipate additional heat.

Driving Inductive Loads
A wide variety of devices (mice, keyboards, cameras, and printers) can load the USB port. These devices commonly connect to the port with cables, which can add an inductive component to the load. This inductance causes the output voltage at the USB port to ring during a load step. The MAX1930 is capable of driving inductive loads, but avoid exceeding the device's absolute maximum ratings. Usually the load inductance is relatively small, and the MAX1930's input includes a substantial bulk capacitance from an upstream regulator, as well as local bypass capacitors, limiting overshoot. If severe ringing occurs due to large load inductance, clamp the MAX1930 output below 6 V and above -0.3 V .

Chip Information

PROCESS: BiCMOS

Current-Limited Switch for Two USB Ports

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
\qquad 7
© 2002 Maxim Integrated Products
Printed USA
MAXINI is a registered trademark of Maxim Integrated Products.

